Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 51, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073847

RESUMO

BACKGROUND: The Qinghai-Tibetan Plateau is experiencing rapid climate warming, which may further affect plant growth. However, little is known about the plant physiological response to climate change. RESULTS: Here, we select the Kobresia pygmaea, an important perennial Cyperaceae forage, to examine the physiological indices to temperature changes in different growing months. We determined the contents of malondialdehyde, proline, soluble sugars, superoxide dismutase, peroxidation, and catalase activity in leaves and roots of Kobresia pygmaea at 25℃, 10℃, 4℃ and 0℃ from June to September in 2020. The results showed that the content of osmotic adjustment substances in the leaves and roots of Kobresia pygmaea fluctuated greatly with experimental temperature in June and September. The superoxide dismutase activity in the leaves and roots of the four months changed significantly with temperatures. The peroxidation activity in the leaves was higher than that in the roots, while the catalase activity in leaves and roots fluctuates greatly during June, with a relative stable content in other months. Membership function analysis showed that higher temperatures were more harmful to plant leaves, and lower temperatures were more harmful to plant roots. The interaction of organs, growing season and stress temperature significantly affected the physiological indicators. CONCLUSIONS: The physiological indicators of Kobresia pygmaea can actively respond to temperature changes, and high temperature can reduce the stress resistance Kobresia pygmaea. Our findings suggest that the Kobresia pygmaea has high adaptability to climate warming in the future.


Assuntos
Cyperaceae/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , China , Temperatura Baixa , Temperatura Alta , Estações do Ano , Tibet
2.
Sci Rep ; 10(1): 8990, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488082

RESUMO

Tussock cottongrass (Eriophorum vaginatum) is a foundation species for much of the arctic moist acidic tundra, which is currently experiencing extreme effects of climate change. The Arctic is facing higher summer temperatures and extreme weather events are becoming more common. We used Illumina RNA-Seq to analyse cDNA libraries for differential expression of genes from leaves of ecologically well-characterized ecotypes of tussock cottongrass found along a latitudinal gradient in the Alaskan Arctic and transplanted into a common garden. Plant sampling was performed on a typical summer day and during an extreme heat event. We obtained a de novo assembly that contained 423,353 unigenes. There were 363 unigenes up-regulated and 1,117 down-regulated among all ecotypes examined during the extreme heat event. Of these, 26 HSP unigenes had >log2-fold up-regulation. Several TFs associated with heat stress in previous studies were identified that had >log2-fold up- or down-regulation during the extreme heat event (e.g., DREB, NAC). There was consistent variation in DEGs among ecotypes, but not specifically related to whether plants originated from taiga or tundra ecosystems. As the climate changes it is essential to determine ecotypic diversity at the genomic level, especially for widespread species that impact ecosystem function.


Assuntos
Cyperaceae/fisiologia , Regulação da Expressão Gênica de Plantas , Alaska , Regiões Árticas , Cyperaceae/genética , Ecótipo , Calor Extremo , Perfilação da Expressão Gênica , Ontologia Genética , Temperatura
3.
New Phytol ; 225(1): 196-208, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400239

RESUMO

Variation in resource availability can lead to phenotypic plasticity in the traits comprising the world-wide leaf economics spectrum (LES), potentially impairing plant function and complicating the use of tabulated values for LES traits in ecological studies. We compared 14 Carex (Cyperaceae) species in a factorial experiment (unshaded/shaded × sufficient/insufficient P) to analyze how changes in the network of allometric scaling relationships among LES traits influenced growth under favorable and resource-limited conditions. Changes in leaf mass per area (LMA) shifted the scaling relationships among LES traits expressed per unit area vs mass in ways that helped to sustain growth under resource limitation. Increases in area-normalized photosynthetic capacity and foliar nitrogen (N) were correlated with increased growth, offsetting losses associated with mass-normalized dark respiration and foliar N. These shifts increased the contributions to growth associated with photosynthetic N-use efficiency and the N : P ratio. Plasticity in LMA is at the hub of the functional role of the LES as an integrated and resilient complex system that balances the relationships among area- and mass-based aspects of gas exchange and foliar nutrient traits to sustain at least some degree of plant growth under differing availabilities of above- and below-ground resources.


Assuntos
Cyperaceae/fisiologia , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Cyperaceae/genética , Cyperaceae/crescimento & desenvolvimento , Cyperaceae/efeitos da radiação , Ecologia , Luz , Tamanho do Órgão , Oxigênio/metabolismo , Fenótipo , Fósforo/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação
4.
PLoS One ; 14(3): e0202723, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840629

RESUMO

The study reports the micro- and macrobotanical remains on wild Yak dung, providing evidence for understanding the diet, habitat, and ecology of extant and extinct megaherbivores. Grasses are the primary diet of the yak as indicated by the abundance of grass pollen and phytoliths. Other associated non-arboreal and arboreal taxa namely, Cyperacaeae, Rosaceae, Chenopodiaceae, Artemisia, Prunus, and Rhododendron are also important dietary plants for their living. The observation of plant macrobotanical remains especially the vegetative part and seeds of the grasses and Cyperaceae is also in agreement with the palynodata. The documented micro- and macrobotanical data are indicative of both Alpine meadow and steppe vegetation under cold and dry climate which exactly reflected the current vegetation composition and climate in the region. The recovery of Botryococcus, Arcella, and diatom was observed in trace amounts in the palynoassemblage which would have been incorporated in the dung through the ingestion of water and are indicative of the presence of perennial water system in the region. Energy dispersive spectroscopy analysis marked that the element contained in dung samples has variation in relation to the summer and winter, which might be due to the availability of the food plants and vegetation. This generated multiproxy data serves as a strong supplementary data for modern pollen and vegetation relationships based on surface soil samples in the region. The recorded multiproxy data could also be useful to interpret the relationship between the coprolites of herbivorous fauna and the palaeodietary, the palaeoecology in the region, and to correlate with other mega herbivores in a global context.


Assuntos
Cyperaceae/fisiologia , Ecossistema , Espécies em Perigo de Extinção , Fezes/química , Herbivoria , Esterco/análise , Estações do Ano , Animais , Bovinos
5.
Ecol Appl ; 28(7): 1762-1772, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30179279

RESUMO

The realization that anthropogenic nitrogen (N) deposition is causing significant environmental change in many ecosystems has led to lower emissions of reactive N and deposition rates in many regions. However, the impacts of N deposition on terrestrial ecosystems can be long lasting, with significant inertia in the return of the biota and biogeochemical processes to baseline levels. To better understand patterns of recovery and the factors that may contribute to slow or no responses following declines in N deposition, we followed plant species composition, microbial abundance, N cycling rates, soil pH, and pools of NO3- and extractable cations in an impacted alpine ecosystem following cessation of 12-yr experiment increasing N deposition rates by 0, 20, 40, and 60 kg N·ha-1 ·yr-1 . Simulated N deposition had resulted in a tripling in the cover of the nitrophilic species Carex rupestris, while the dominant sedge Kobresia myosuroides had decreased by more than half at the highest N input level. In addition, nitrification rates were elevated, soil extractable magnesium (Mg2+ ) and pH decreased, and aluminum (Al3+ ) and manganese (Mn2+ ) were elevated at the highest N treatment inputs. Over the nine years following cessation of N additions to the impacted plots, only the cover of the nitrophilic C. rupestris showed any recovery to prior levels. Abundances of both bacteria and fungi were lower with N addition in both treatment and recovery plots. Rates of nitrification and pools of NO3- remained elevated in the recovery plots, likely contributing to the lack of biotic response to the cessation of N inputs. In addition, nutrient base cations (Ca2+ and Mg2+ ) and soil pH remained depressed, and the toxic metal cations (Al3+ and Mn2+ ) remained elevated in recovery plots, also potentially influencing biotic recovery. These results emphasize the importance of considering long-term environmental impacts of N deposition associated with legacy effects, such as elevated N cycling and losses of base cations, in determining environmental standards such as the metrics used for critical loads.


Assuntos
Conservação dos Recursos Naturais , Cyperaceae/fisiologia , Pradaria , Ciclo do Nitrogênio , Solo/química , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Microbiologia do Solo
6.
PLoS One ; 12(12): e0189769, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29281689

RESUMO

Plants growing in high-mountain environments may share common morphological features through convergent evolution resulting from an adaptative response to similar ecological conditions. The Carex flava species complex (sect. Ceratocystis, Cyperaceae) includes four dwarf morphotypes from Circum-Mediterranean mountains whose taxonomic status has remained obscure due to their apparent morphological resemblance. In this study we investigate whether these dwarf mountain morphotypes result from convergent evolution or common ancestry, and whether there are ecological differences promoting differentiation between the dwarf morphotypes and their taxonomically related large, well-developed counterparts. We used phylogenetic analyses of nrDNA (ITS) and ptDNA (rps16 and 5'trnK) sequences, ancestral state reconstruction, multivariate analyses of macro- and micromorphological data, and species distribution modeling. Dwarf morphotype populations were found to belong to three different genetic lineages, and several morphotype shifts from well-developed to dwarf were suggested by ancestral state reconstructions. Distribution modeling supported differences in climatic niche at regional scale between the large forms, mainly from lowland, and the dwarf mountain morphotypes. Our results suggest that dwarf mountain morphotypes within this sedge group are small forms of different lineages that have recurrently adapted to mountain habitats through convergent evolution.


Assuntos
Evolução Biológica , Cyperaceae/genética , Adaptação Fisiológica , Cyperaceae/classificação , Cyperaceae/fisiologia , Região do Mediterrâneo , Modelos Teóricos , Filogenia , Especificidade da Espécie
7.
PLoS One ; 12(5): e0177497, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28552965

RESUMO

Plant-plant interactions that change along environmental gradients can be affected by different combinations of environmental characteristics, such as the species and planting density ratios. Suaeda salsa and Scirpus planiculumis are regionally dominant species in the Shuangtai estuarine wetland. Compared with non-clonal S. salsa, clonal S. planiculumis has competitive advantages because of its morphological plasticity. However, salt-tolerant S. salsa may grow faster than S. planiculumis in saline-alkali estuary soil. Whether the interactions between these two species along salinity gradients are affected by the level of salt stress and mixed planting density ratio remains unclear. Thus, to test the effects of salt stress and planting density ratios on the interactions between S. planiculumis and S. salsa in the late growing season, we conducted a greenhouse experiment consisting of 3 salinity levels (0, 8 and 15ppt) and 5 planting density ratios. Our results showed that the promotion of S. salsa growth and inhibition of S. planiculumis growth at low salinity levels (8 ppt) did not alter the interactions between the two species. Facilitation of S. salsa occurred at high salinity levels, and the magnitude of this net outcome decreased with increases in the proportion of S. salsa. These results suggest that competition and facilitation processes not only depend on the combinations of different life-history characteristics of species but also on the planting density ratio. These findings may contribute to the understanding of the responses of estuarine wetland plant-plant interactions to human modifications of estuarine salinity.


Assuntos
Chenopodiaceae/fisiologia , Cyperaceae/fisiologia , Salinidade , Estresse Fisiológico , Chenopodiaceae/crescimento & desenvolvimento , Cyperaceae/crescimento & desenvolvimento
8.
Arch Environ Contam Toxicol ; 72(1): 1-10, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27822581

RESUMO

Periphyton relevance for methylmercury (MeHg) production and accumulation are now well known in aquatic ecosystems. Sulfate-reducing bacteria and other microbial groups were identified as the main MeHg producers, but the effect of periphyton algae on the accumulation and transfer of MeHg to the food web remains little studied. Here we investigated the role of specific groups of algae on MeHg accumulation in the periphyton of Schoenoplectus californicus ssp. (Totora) and Myriophyllum sp. in Uru Uru, a tropical high-altitude Bolivian lake with substantial fishing and mining activities accruing around it. MeHg concentrations were most strongly related to the cell abundance of the Chlorophyte genus Oedogonium (r 2 = 0.783, p = 0.0126) and to no other specific genus despite the presence of other 34 genera identified. MeHg was also related to total chlorophyll-a (total algae) (r 2 = 0.675, p = 0.0459), but relations were more significant with chlorophyte cell numbers, chlorophyll-b (chlorophytes), and chlorophyll-c (diatoms and dinoflagellates) (r 2 = 0.72, p = 0.028, r 2 = 0.744, p = 0.0214, and r 2 = 0.766, p = 0.0161 respectively). However, Oedogonium explains most variability of chlorophytes and chlorophyll-c (r 2 = 0.856, p = < 0.001 and r 2 = 0.619, p = 0.002, respectively), suggesting it is the most influential group for MeHg accumulation and periphyton algae composition at this particular location and given time.


Assuntos
Magnoliopsida/fisiologia , Compostos de Metilmercúrio/metabolismo , Microalgas/química , Poluentes Químicos da Água/metabolismo , Altitude , Biota , Bolívia , Clorófitas/química , Clorófitas/classificação , Cyperaceae/fisiologia , Diatomáceas/química , Diatomáceas/classificação , Dinoflagelados/química , Dinoflagelados/classificação , Monitoramento Ambiental , Lagos , Microalgas/classificação
9.
J Exp Bot ; 67(18): 5391-5401, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27492982

RESUMO

Members of the Cyperaceae family exhibit an asymmetric microsporogenesis that results in the degeneration of three out of four meiotic products. Efforts have been made previously to describe the resulting structure, named the pseudomonad, but mechanisms concerning the establishment of cell domains, nuclear development, and programmed cell death are largely unknown. Using the Rhynchospora genus as a model, evidence for cell asymmetry, cytoplasmic isolation, and programmed cell death was obtained by a combination of electron microscopic, cytochemical, immunocytochemical, in situ hybridization, and flow cytometric methods. Degenerative cells were identified at the abaxial region, with the cytoskeleton marking their delimitation from the functional domain after meiosis. After attempting to initiate cell division with an unreplicated genome and abnormal spindle assembly, these cells exhibited a gradual process of cytoplasmic contraction associated with hypermethylation of cytosines and differential loss of DNA. These results indicate that the asymmetric tetrad establishes a functional cell, where one nucleus is preferentially selected to survive. Degenerative haploid cells are then eliminated in a multistep process associated with mitotic disorder, non-random elimination of repetitive DNA, vacuolar cell death, and DNA fragmentation.


Assuntos
Morte Celular/fisiologia , Cyperaceae/fisiologia , Gametogênese Vegetal/fisiologia , Divisão Celular/fisiologia , Cyperaceae/ultraestrutura , Citoplasma/fisiologia , Citoesqueleto/fisiologia , Hibridização In Situ , Meiose/fisiologia , Microscopia Eletrônica
10.
Sci Rep ; 6: 27077, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27271207

RESUMO

Despite the common misconception of nearly static organisms, plants do interact continuously with the environment and with each other. It is fair to assume that during their evolution they developed particular features to overcome similar problems and to exploit possibilities from environment. In this paper we introduce various quantitative measures based on recent advancements in complex network theory that allow to measure the effective similarities of various species. By using this approach on the similarity in fruit-typology ecological traits we obtain a clear plant classification in a way similar to traditional taxonomic classification. This result is not trivial, since a similar analysis done on the basis of diaspore morphological properties do not provide any clear parameter to classify plants species. Complex network theory can then be used in order to determine which feature amongst many can be used to distinguish scope and possibly evolution of plants. Future uses of this approach range from functional classification to quantitative determination of plant communities in nature.


Assuntos
Frutas/fisiologia , Dispersão Vegetal/fisiologia , Biologia de Sistemas/estatística & dados numéricos , Verduras/fisiologia , Asteraceae/anatomia & histologia , Asteraceae/fisiologia , Brassicaceae/anatomia & histologia , Brassicaceae/fisiologia , Cyperaceae/anatomia & histologia , Cyperaceae/fisiologia , Conjuntos de Dados como Assunto , Ecossistema , Fabaceae/anatomia & histologia , Fabaceae/fisiologia , Frutas/anatomia & histologia , Poaceae/anatomia & histologia , Poaceae/fisiologia , Rosaceae/anatomia & histologia , Rosaceae/fisiologia , Verduras/anatomia & histologia
11.
BMC Ecol ; 16: 3, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830496

RESUMO

BACKGROUND: Propagule retention time is a key factor in determining propagule dispersal distance and the shape of "seed shadows". Propagules dispersed by animal vectors are either ingested and retained in the gut until defecation or attached externally to the body until detachment. Retention time is a continuous variable, but it is commonly measured at discrete time points, according to pre-established sampling time-intervals. Although parametric continuous distributions have been widely fitted to these interval-censored data, the performance of different fitting methods has not been evaluated. To investigate the performance of five different fitting methods, we fitted parametric probability distributions to typical discretized retention-time data with known distribution using as data-points either the lower, mid or upper bounds of sampling intervals, as well as the cumulative distribution of observed values (using either maximum likelihood or non-linear least squares for parameter estimation); then compared the estimated and original distributions to assess the accuracy of each method. We also assessed the robustness of these methods to variations in the sampling procedure (sample size and length of sampling time-intervals). RESULTS: Fittings to the cumulative distribution performed better for all types of parametric distributions (lognormal, gamma and Weibull distributions) and were more robust to variations in sample size and sampling time-intervals. These estimated distributions had negligible deviations of up to 0.045 in cumulative probability of retention times (according to the Kolmogorov-Smirnov statistic) in relation to original distributions from which propagule retention time was simulated, supporting the overall accuracy of this fitting method. In contrast, fitting the sampling-interval bounds resulted in greater deviations that ranged from 0.058 to 0.273 in cumulative probability of retention times, which may introduce considerable biases in parameter estimates. CONCLUSIONS: We recommend the use of cumulative probability to fit parametric probability distributions to propagule retention time, specifically using maximum likelihood for parameter estimation. Furthermore, the experimental design for an optimal characterization of unimodal propagule retention time should contemplate at least 500 recovered propagules and sampling time-intervals not larger than the time peak of propagule retrieval, except in the tail of the distribution where broader sampling time-intervals may also produce accurate fits.


Assuntos
Probabilidade , Dispersão de Sementes , Animais , Cyperaceae/fisiologia , Patos , Fenômenos Fisiológicos Vegetais , Potamogetonaceae/fisiologia , Tamanho da Amostra , Fatores de Tempo
12.
Genetika ; 52(5): 541-60, 2016 May.
Artigo em Russo | MEDLINE | ID: mdl-29368476

RESUMO

Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.


Assuntos
Afídeos/fisiologia , Evolução Biológica , Cyperaceae/fisiologia , Hemípteros/fisiologia , Meiose/fisiologia , Animais , Reprodução/fisiologia
13.
Ying Yong Sheng Tai Xue Bao ; 27(5): 1417-1426, 2016 May.
Artigo em Chinês | MEDLINE | ID: mdl-29732802

RESUMO

The salt marsh plant communities were investigated with quadrats in the southern Chongming Dongtan. Based on the vegetation coverage and the 2×2 contingency table, 8 common species among the 17 higher plants recorded were analyzed. The variance ratio of overall association, Chi-square test and Spearman rank correlation coefficient were used to describe the relevance and correlations between species pairs. The results showed that W (48.61), a statistical index to test the variance ratio (VR=0.61), fell outside of the range of Chi-square test, indicating that the overall correlation of all vegetation species was significantly negative. According to the environment adaptation mode of dominant species and the main influencing factors, the species were divided into 4 ecological groups, i.e., Phragmites australis, Carex scabrifolia-Scirpus triqueter - Juncellus serotinus, Spartina alterniflora - Scirpus mariqueter, Echinochloa crusgalli - Imperata cylindrica, based on the ranking of Spearman correlation coefficient. The inter-specific relationships in the salt marsh plant community of southern Chongming Dongtan were complicated and extremely unstable with species sensitive to environmental impacts. According to the analysis of relationships between the species and their pre-sent distribution, we suggested using S. mariqueter as target species to provide strategies for protecting native species based habitats.


Assuntos
Cyperaceae/fisiologia , Estuários , Poaceae/fisiologia , Áreas Alagadas , China
14.
Bioresour Technol ; 202: 198-205, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26708488

RESUMO

Four plant species, Typha orientalis, Scirpus validus, Canna indica and Iris tectorum were selected to assess their physiological response and effects on nitrogen and COD removal to high total ammoniacal nitrogen (TAN) in constructed wetlands. Results showed that high TAN caused decreased relative growth rate, net photosynthetic rate, and leaf transpiration. C. indica and T. orientalis showed higher TAN adaptability than S. validus and I. tectorum. Below TAN of 200 mg L(-1), growth of C. indica and T. orientalis was less affected or even stimulated at TAN range 100-200 mg L(-1). However, S. validus and I. tectorum was obviously suppressed when TAN was above 100 mg L(-1). High TAN generated obvious oxidative stress showing increased proline and malondialdehyde contents, and superoxide dismutase was inhibited. It indicated that the threshold for plant self-bioremediation against high TAN was 200 mg L(-1). What's more, planted CWs showed higher nitrogen and COD removal. Removal rate of C. indica and T. orientalis was higher than S. validus and I. tectorum.


Assuntos
Amônia/farmacologia , Cyperaceae/fisiologia , Desnitrificação , Iris (Planta)/fisiologia , Typhaceae/fisiologia , Áreas Alagadas , Zingiberales/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Cyperaceae/efeitos dos fármacos , Desnitrificação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Iris (Planta)/efeitos dos fármacos , Nitrogênio/análise , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Typhaceae/efeitos dos fármacos , Águas Residuárias , Zingiberales/efeitos dos fármacos
15.
Glob Chang Biol ; 21(10): 3827-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26033529

RESUMO

Plants are often genetically specialized as ecotypes attuned to local environmental conditions. When conditions change, the optimal environment may be physically displaced from the local population, unless dispersal or in situ evolution keep pace, resulting in a phenomenon called adaptational lag. Using a 30-year-old reciprocal transplant study across a 475 km latitudinal gradient, we tested the adaptational lag hypothesis by measuring both short-term (tiller population growth rates) and long-term (17-year survival) fitness components of Eriophorum vaginatum ecotypes in Alaska, where climate change may have already displaced the optimum. Analyzing the transplant study as a climate transfer experiment, we showed that the climate optimum for plant performance was displaced ca. 140 km north of home sites, although plants were not generally declining in size at home sites. Adaptational lag is expected to be widespread globally for long-lived, ecotypically specialized plants, with disruptive consequences for communities and ecosystems.


Assuntos
Mudança Climática , Cyperaceae/fisiologia , Dispersão Vegetal , Adaptação Fisiológica , Alaska , Cyperaceae/crescimento & desenvolvimento , Raízes de Plantas , Crescimento Demográfico
16.
PLoS One ; 10(3): e0118687, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799017

RESUMO

Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival.


Assuntos
Cyperaceae/fisiologia , Ondas de Maré , Áreas Alagadas , Brotos de Planta/fisiologia , Sementes/fisiologia , Navios , Vento
17.
Sci Total Environ ; 505: 1213-24, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25461119

RESUMO

The Tibetan highlands host the largest alpine grassland ecosystems worldwide, bearing soils that store substantial stocks of carbon (C) that are very sensitive to land use changes. This study focuses on the cycling of photoassimilated C within a Kobresia pygmaea pasture, the dominating ecosystems on the Tibetan highlands. We investigated short-term effects of grazing cessation and the role of the characteristic Kobresia root turf on C fluxes and belowground C turnover. By combining eddy-covariance measurements with (13)CO2 pulse labeling we applied a powerful new approach to measure absolute fluxes of assimilates within and between various pools of the plant-soil-atmosphere system. The roots and soil each store roughly 50% of the overall C in the system (76 Mg C ha(-1)), with only a minor contribution from shoots, which is also expressed in the root:shoot ratio of 90. During June and July the pasture acted as a weak C sink with a strong uptake of approximately 2 g C m(-2) d(-1) in the first half of July. The root turf was the main compartment for the turnover of photoassimilates, with a subset of highly dynamic roots (mean residence time 20 days), and plays a key role for the C cycling and C storage in this ecosystem. The short-term grazing cessation only affected aboveground biomass but not ecosystem scale C exchange or assimilate allocation into roots and soil.


Assuntos
Carbono/análise , Pradaria , Altitude , Ciclo do Carbono , Radioisótopos de Carbono/análise , Cyperaceae/fisiologia , Ecossistema , Meio Ambiente , Poaceae/fisiologia , Solo , Tibet
18.
Nat Commun ; 5: 5070, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25295686

RESUMO

Meiosis is a specialized cell division in sexually reproducing organisms before gamete formation. Following DNA replication, the canonical sequence in species with monocentric chromosomes is characterized by reductional segregation of homologous chromosomes during the first and equational segregation of sister chromatids during the second meiotic division. Species with holocentric chromosomes employ specific adaptations to ensure regular disjunction during meiosis. Here we present the analysis of two closely related plant species with holocentric chromosomes that display an inversion of the canonical meiotic sequence, with the equational division preceding the reductional. In-depth analysis of the meiotic divisions of Rhynchospora pubera and R. tenuis reveals that during meiosis I sister chromatids are bi-oriented, display amphitelic attachment to the spindle and are subsequently separated. During prophase II, chromatids are connected by thin chromatin threads that appear instrumental for the regular disjunction of homologous non-sister chromatids in meiosis II.


Assuntos
Centrômero , Cromossomos de Plantas/fisiologia , Cyperaceae/fisiologia , Meiose/fisiologia , Cromatina , Pareamento Cromossômico/fisiologia , Segregação de Cromossomos/fisiologia
19.
Oecologia ; 174(2): 339-50, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24052332

RESUMO

Changes in winter precipitation that include both decreases and increases in winter snow are underway across the Arctic. In this study, we used a 14-year experiment that has increased and decreased winter snow in the moist acidic tussock tundra of northern Alaska to understand impacts of variation in winter snow depth on summer leaf-level ecophysiology of two deciduous shrubs and a graminoid species, including: instantaneous rates of leaf gas exchange, and δ(13)C, δ(15)N, and nitrogen (N) concentrations of Betula nana, Salix pulchra, and Eriophorum vaginatum. Leaf-level measurements were complemented by measurements of canopy leaf area index (LAI) and depth of thaw. Reductions in snow lowered summer leaf photosynthesis, conductance, and transpiration rates by up to 40% compared to ambient and deep snow conditions for Eriophorum vaginatum, and reduced Salix pulchra conductance and transpiration by up to 49%. In contrast, Betula nana exhibited no changes in leaf gas exchange in response to lower or deeper snow. Canopy LAI increased with added snow, while reduced winter snow resulted in lower growing season soil temperatures and reduced thaw depths. Our findings indicate that the spatial and temporal variability of future snow depth will have individualistic consequences for leaf-level C fixation and water flux by tundra species, and that these responses will be manifested over the longer term by changes in canopy traits, depth of thaw, soil C and N processes, and trace gas (CO2 and H2O) exchanges between the tundra and the atmosphere.


Assuntos
Betula/fisiologia , Cyperaceae/fisiologia , Salix/fisiologia , Neve , Alaska , Regiões Árticas , Isótopos de Carbono/análise , Clima , Isótopos de Nitrogênio/análise , Fotossíntese , Folhas de Planta/fisiologia , Transpiração Vegetal , Estações do Ano , Solo , Água
20.
Glob Chang Biol ; 20(5): 1452-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24306968

RESUMO

Predicting the response of species to environmental changes is a great and on-going challenge for ecologists, and this requires a more in-depth understanding of the importance of biotic interactions and the population structuration in the landscape. Using a reciprocal transplantation experiment, we tested the response of five species to an elevational gradient. This was combined to a neighbour removal treatment to test the importance of local adaptation and biotic interactions. The trait studied was performance measured as survival and biomass. Species response varied along the elevational gradient, but with no consistent pattern. Performance of species was influenced by environmental conditions occurring locally at each site, as well as by positive or negative effects of the surrounding vegetation. Indeed, we observed a shift from competition for biomass to facilitation for survival as a response to the increase in environmental stress occurring in the different sites. Unlike previous studies pointing out an increase of stress along the elevation gradient, our results supported a stress gradient related to water availability, which was not strictly parallel to the elevational gradient. For three of our species, we observed a greater biomass production for the population coming from the site where the species was dominant (central population) compared to population sampled at the limit of the distribution (marginal population). Nevertheless, we did not observe any pattern of local adaptation that could indicate adaptation of populations to a particular habitat. Altogether, our results highlighted the great ability of plant species to cope with environmental changes, with no local adaptation and great variability in response to local conditions. Our study confirms the importance of taking into account biotic interactions and population structure occurring at local scale in the prediction of communities' responses to global environmental changes.


Assuntos
Mudança Climática , Cyperaceae/fisiologia , Meio Ambiente , Poaceae/fisiologia , Adaptação Fisiológica , Altitude , Biomassa , Cyperaceae/crescimento & desenvolvimento , França , Poaceae/crescimento & desenvolvimento , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...